McCammon Group
NewsSeminarsPublicationsPeopleWikiContact Us
McCammon Group
We have recently changed our website. Looking for the previous site?
Computational Research in Molecular Chemistry
Login
Lipoprotein-associated phospholipase A2: A paradigm for allosteric regulation by membranesMouchlis, V.D., D. Hayashi, A.M. Vasquez, J. Cao, J.A. McCammon, E.A. DennisTo Proc. Natl. Acad. Sci. USA January 11, 119 (2) e2102953118 (2022)    
Lipoprotein-associated phospholipase A2 (Lp-PLA2) associates with low- and high-density lipoproteins in human plasma and specifically hydrolyzes circulating oxidized phospholipids involved in oxidative stress. The association of this enzyme with the lipoprotein’s phospholipid monolayer to access its substrate is the most crucial first step in its catalytic cycle. The current study demonstrates unequivocally that a significant movement of a major helical peptide region occurs upon membrane binding, resulting in a large conformational change upon Lp-PLA2 binding to a phospholipid surface. This allosteric regulation of an enzyme’s activity by a large membrane-like interface inducing a conformational change in the catalytic site defines a unique dimension of allosterism. The mechanism by which this enzyme associates with phospholipid interfaces to select and extract a single phospholipid substrate molecule and carry out catalysis is key to understanding its physiological functioning. A lipidomics platform was employed to determine the precise substrate specificity of human recombinant Lp-PLA2 and mutants. This study uniquely elucidates the association mechanism of this enzyme with membranes and its resulting conformational change as well as the extraction and binding of specific oxidized and short acyl-chain phospholipid substrates. Deuterium exchange mass spectrometry coupled with molecular dynamics simulations was used to define the precise specificity of the subsite for the oxidized fatty acid at the sn-2 position of the phospholipid backbone. Despite the existence of several crystal structures of this enzyme cocrystallized with inhibitors, little was understood about Lp-PLA2‘s specificity toward oxidized phospholipids.
Investigating intrinsically disordered proteins with Brownian dynamicsAhn, S.H., G.A. Huber, J.A. McCammonFront. Mol. Biosci., 08 June 2022, Sec. Molecular Recognition, Volume 9 - 2022    
Intrinsically disordered proteins (IDPs) have recently become systems of great interest due to their involvement in modulating many biological processes and their aggregation being implicated in many diseases. Since IDPs do not have a stable, folded structure, however, they cannot be easily studied with experimental techniques. Hence, conducting a computational study of these systems can be helpful and be complementary with experimental work to elucidate their mechanisms. Thus, we have implemented the coarse-grained force field for proteins (COFFDROP) in Browndye 2.0 to study IDPs using Brownian dynamics (BD) simulations, which are often used to study large-scale motions with longer time scales and diffusion-limited molecular associations. Specifically, we have checked our COFFDROP implementation with eight naturally occurring IDPs and have investigated five (Glu-Lys)25 IDP sequence variants. From measuring the hydrodynamic radii of eight naturally occurring IDPs, we found the ideal scaling factor of 0.786 for non-bonded interactions. We have also measured the entanglement indices (average Cα distances to the other chain) between two (Glu-Lys) 25 IDP sequence variants, a property related to molecular association. We found that entanglement indices decrease for all possible pairs at excess salt concentration, which is consistent with long-range interactions of these IDP sequence variants getting weaker at increasing salt concentration.
Architecture and self-assembly of the jumbo bacteriophage nuclear shellLaughlin, T.G., A. Deep, A.M. Prichard, C. Seitz Y. Gu, E. Enustun, S. Suslov, K. Khanna1, E.A. Birkholz, E. Armbruster, J.A. McCammon, R.E. Amaro, J. Pogliano, K.D. Corbett, E. VillaNature volume 608, pages 429–435 (2022)    
Bacteria encode myriad defenses that target the genomes of infecting bacteriophage, including restriction-modification and CRISPR/Cas systems. In response, one family of large bacteriophage employs a nucleus-like compartment to protect their replicating genomes by excluding host defense factors. However, the principle composition and structure of this compartment remain unknown. Here, we find that the bacteriophage nuclear shell assembles primarily from one protein, termed chimallin. Combining cryo-electron tomography of nuclear shells in bacteriophage-infected cells and cryo-electron microscopy of a minimal chimallin compartment in vitro, we show that chimallin cooperatively self-assembles as a flexible sheet into closed micron-scale compartments. The architecture and assembly dynamics of the chimallin shell suggest mechanisms for its nucleation and growth, and its role as a scaffold for phage-encoded factors mediating macromolecular transport, cytoskeletal interactions, and viral maturation.
Essential role of loop dynamics in type II NRPS biomolecular recognitionCorpuz, J.C., A. Patel, T.D. Davis, L.M. Podust, J.A. McCammon, M.D. BurkartACS Chem. Biol. 2022, 17, 10, 2890–2898    
Non-ribosomal peptides play a critical role in the clinic as therapeutic agents. To access more chemically diverse therapeutics, non-ribosomal peptide synthetases (NRPSs) have been targeted for engineering through combinatorial biosynthesis; however, this has been met with limited success in part due to the lack of proper protein–protein interactions between non-cognate proteins. Herein, we report our use of chemical biology to enable X-ray crystallography, molecular dynamics (MD) simulations, and biochemical studies to elucidate binding specificities between peptidyl carrier proteins (PCPs) and adenylation (A) domains. Specifically, we determined X-ray crystal structures of a type II PCP crosslinked to its cognate A domain, PigG and PigI, and of PigG crosslinked to a non-cognate PigI homologue, PltF. The crosslinked PCP-A domain structures possess large protein–protein interfaces that predominantly feature hydrophobic interactions, with specific electrostatic interactions that orient the substrate for active site delivery. MD simulations of the PCP-A domain complexes and unbound PCP structures provide a dynamical evaluation of the transient interactions formed at PCP-A domain interfaces, which confirm the previously hypothesized role of a PCP loop as a crucial recognition element. Finally, we demonstrate that the interfacial interactions at the PCP loop 1 region can be modified to control PCP binding specificity through gain-of-function mutations. This work suggests that loop conformational preferences and dynamism account for improved shape complementary in the PCP-A domain interactions. Ultimately, these studies show how crystallographic, biochemical, and computational methods can be used to rationally re-engineer NRPSs for non-cognate interactions.
Stomatal CO2/bicarbonate Sensor Consists of Two Interacting Protein Kinases, Raf-like HT1 and non-kinase-activity requiring MPK12/MPK4Takahashi Y., K. Bosmans, P.-K Hsu, K. Paul, C.-Y. Yeh, Y.-S. Wang, D. Yarmolinsky, M. Sierla, T. Vahisalu, C. Seitz, J.A. McCammon, J. Kangasjarvi, H. Kollist, L. Zhang, T. Trac, J.I. Schroeder.Sci Adv. 2022 Dec; 8(49): eabq6161. Published online 2022 Dec 7.    
The continuing rise in the atmospheric carbon dioxide (CO2) concentration causes stomatal closing, thus critically affecting transpirational water loss, photosynthesis, and plant growth. However, the primary CO2 sensor remains unknown. Here, we show that elevated CO2 triggers interaction of the MAP kinases MPK4/MPK12 with the HT1 protein kinase, thus inhibiting HT1 kinase activity. At low CO2, HT1 phosphorylates and activates the downstream negatively regulating CBC1 kinase. Physiologically relevant HT1-mediated phosphorylation sites in CBC1 are identified. In a genetic screen, we identify dominant active HT1 mutants that cause insensitivity to elevated CO2. Dominant HT1 mutants abrogate the CO2/bicarbonate-induced MPK4/12-HT1 interaction and HT1 inhibition, which may be explained by a structural AlphaFold2- and Gaussian-accelerated dynamics-generated model. Unexpectedly, MAP kinase activity is not required for CO2 sensor function and CO2-triggered HT1 inhibition and stomatal closing. The presented findings reveal that MPK4/12 and HT1 together constitute the long-sought primary stomatal CO2/bicarbonate sensor upstream of the CBC1 kinase in plants.
Website Security Test