
Interactive essential dynamics

John Mongan
Bioinformatics Program; Medical Scientist Training Program; NSF Center for Theoretical Biological
Physics, University of California at San Diego, La Jolla, CA 92093-0365, USA
(e-mail: jmongan@mccammon.ucsd.edu)

Received 13 May 2004; accepted in revised form 28 September 2004

Key words: essential dynamics, graphical user interface, interactive, molecular dynamics, principal com-
ponent analysis, visualization

Summary

Essential dynamics (ED) is a useful method for analyzing trajectories generated by molecular dynamics
(MD), but current tools are awkward to use, limiting the usefulness of the technique. This paper describes a
new interactive graphical interface for visualization of ED results, including filtering a trajectory on an
arbitrary set of eigenvectors and manipulation of a structure’s projection along any eigenvector.

Abbreviations: ED – essential dynamics; IED – Interactive Essential Dynamics; MD – molecular
dynamics; VMD – Visual Molecular Dynamics.

Introduction

Trajectories generated from molecular dynamics
(MD) simulations provide a means to identify and
study motions crucial for protein function [1].
Separating functionally important motions from
random thermal fluctuations is a major challenge
in analyzing MD trajectories. Principal component
analysis of MD trajectory data, often called
essential dynamics (ED) [2, 3], is frequently used to
separate large-scale correlated motions from local
harmonic fluctuations [4–9].

ED analysis constructs a new orthogonal basis
set for the atomic coordinates in a trajectory, such
that the greatest variance occurs along the first
vector, with monotonically decreasing variance
along successive vectors. These vectors are often
called principal components or eigenvectors, since
their derivation involves an eigen decomposition.
The eigenvalues from the eigen decomposition
represent the relative amount of molecular motion
that occurs along each eigenvector. The eigenvalue
spectrum is sharply peaked for molecular trajectory

data, indicating that most of the molecular motion
canbe describedby displacements along the first few
eigenvectors [2, 4–6, 9]. A trajectory can be pro-
jected onto a subset of selected eigenvectors so only
motion along the selected vectors is allowed. The
most commonly selected subset is the first n eigen-
vectors such that a given percentage of the molec-
ular motion occurs within the subspace formed by
the selected eigenvectors. Projection onto these
vectors filters out thermal noise, making the func-
tionally interesting motions easier to appreciate.
Smaller subsets may be selected to isolate a partic-
ular aspect of the molecule’s motion. One can also
examine the functional meaning of a single eigen-
vector by generating a trajectory with atomic posi-
tions interpolated between extreme projections on
the selected eigenvector.

ED is a standard method of analysis that is
widely implemented in molecular simulation
packages [10–13]. Tools in these packages take
trajectory and eigenvector files as input and
produce a new trajectory as output, which must
be loaded into an integrated [11] or external [10,

Journal of Computer-Aided Molecular Design 18: 433–436, 2004.
� 2004 Kluwer Academic Publishers. Printed in the Netherlands.

433

12, 13] viewer. A more flexible approach [14],
implemented within a limited viewer, is not widely
available. In the available tools, a separate trajec-
tory file of interpolations between extreme projec-
tions must be generated for each eigenvector, and a
separate filtered trajectory file must be generated
for each set of eigenvectors selected for filtering.
Some tools [11, 12] are limited to filtering along a
single eigenvector at a time, which may be prob-
lematic since rotational motion cannot be ade-
quately represented with a single eigenvector.

Generating and loading a separate trajectory
file for each aspect of the ED results is cumber-
some and discourages complete understanding of
the ED analysis. Interactive essential dynamics
(IED) is a new program that addresses these
problems, providing fully interactive analysis of
ED results through a graphical interface. Filtering
eigenvectors can be rapidly added or removed
from within the viewer, even while the trajectory is
being played. The functional meaning of an
eigenvector can be examined from within the
viewer by dragging the atomic positions along the
eigenvector using a slider control. Arrows repre-
senting an atom’s motion along an eigenvector can
be drawn to provide a static representation of an
eigenvector, as in the work of Huitema and van
Liere [14]. IED can calculate eigenvectors and
projections directly, or read the results of calcu-
lations performed in GROMACS [10] or the ptraj
module of AMBER 8 [13]. IED also allows sets of
vectors that do not have accompanying projec-
tions to be loaded, so results of normal modes
analysis performed by AMBER or GROMACS
can be visualized. The Python scripting interface
of visual molecular dynamics (VMD) [15] is used
for display. The extensive visualization, animation,
rendering and analysis capabilities of VMD
remain available while using IED.

Theory and methods

To perform ED, coordinate data from each time-
step is fitted to a reference structure to remove
translational and rotational motion. The fitted
trajectory data are used to construct a covariance
matrix C according to Equation 1:

C ¼ x� xh ið Þ x� xh ið ÞT
D E

ð1Þ

where h i represents the mean across all timesteps,
and the T superscript represents transpose. An
eigen decomposition (or diagonalization) of the
symmetric matrix C is performed to identify K, a
diagonal matrix of eigenvalues and T , a matrix of
column eigenvectors forming a new orthonormal
basis set [2], satisfying

C ¼ T K T T ð2Þ

A zero-mean trajectory matrix, X , can be con-
structed by subtracting xh i from the coordinate
vector for each timestep to form the rows of X .
The matrix of the projections of each timestep
onto each eigenvector, P , is obtained by multi-
plying the trajectory matrix, X , by T

P ¼ X T ð3Þ

For use with IED, these calculations may be per-
formed using the AMBER or GROMACS suites.
IED is also capable of performing these calcula-
tions itself, but is less efficient than AMBER or
GROMACS.

The trajectory matrix, X , can be reconstructed
from the eigenvectors and projection matrices T
and P , by right multiplying Equation 3 by T T:

P T T ¼ X T T T ¼ X I ¼ X ð4Þ

where I is an identity matrix. More usefully, a
matrix of filtered trajectory data, F , can be cal-
culated by multiplying a subset of the (column)
projection vectors in P by the corresponding sub-
set of the eigenvectors in T T. This way F contains
only motions that occur along the eigenvectors
selected from P and T , since motions along other
eigenvectors are represented by projections omit-
ted from the calculation of F . IED employs this
method to calculate filtered trajectories, adding xh i
to the coordinate vector in each row of F to
translate the coordinates back to their original
origins. When a single eigenvector is to be exam-
ined by interpolation between extreme projections,
coordinates are calculated by varying the (scalar)
projection value for the selected eigenvector at the
current time step and recalculating the appropriate
row from F for each value of the projection.

When IED calculates ED directly, it can oper-
ate on trajectory data in any format that VMD is
able to load. When loading results of ED analysis
carried out in GROMACS, it requires a molecular
topology file (in any VMD acceptable format), an

434

eigenvectors file in GROMACS TRR binary for-
mat generated by g_covar, and a projections file
generated by g_anaeig. The first timestep of the
eigenvectors file is ignored, the second contains the
molecule’s average coordinates over the trajectory
and the remaining timesteps contain eigenvectors
in decreasing order of their eigenvalues. The pro-
jections file is formatted as text input to Grace, a
plotting tool. Each eigenvector has a separate
block of projection data within the file; within each
block there is one projection per line, consisting of
a time value followed by a projection value, sep-
arated by whitespace. When loading ED results
from AMBER, the requirements are similar: a
topology file, an eigenvectors file and a projections
file. The eigenvectors file and projections file are
both produced by ptraj and are in text format. The
eigenvectors file contains two header lines, which
are ignored, and the average coordinates, followed
by the eigenvectors. Each eigenvector has a two
line header consisting of a line containing 4
asterisks (****), followed by a line giving the
ordinal number of the eigenvector and its eigen-
value. Numeric data for the average coordinates
and eigenvectors are whitespace delimited, with 7
values per line. The projections file has a two line
header which is ignored. Each successive line

contains a timestep number, followed by projec-
tion values onto each eigenvector for that time-
step. The values are whitespace delimited.

Internally, IED represents the eigenvector data
in a VMD trajectory object and the projection
data in a Python Numeric array object. IED is an
open source application, and is easily extended to
other file formats by writing parsing routines to
read data into the aforementioned data structures.

User interface

IED is started either by selecting a trajectory in
VMD for ED analysis, or by loading files con-
taining the results of an ED analysis previously
performed in ptraj or GROMACS. Once the ED
data are loaded, a window is displayed with a
checkbox and slider for each eigenvector (see
Figure 1). When necessary, the eigenvector slider
area of the window can be scrolled to allow for
arbitrarily large numbers of eigenvectors. Selecting
a checkbox allows motion along the corresponding
eigenvector and activates the eigenvector’s slider,
setting its position to the projection on the eigen-
vector for the current frame of the trajectory.
Check boxes can be selected independently,

Figure 1. Screen shot of IED. Top right window is the main IED window, window immediately below contains the checkboxes and
sliders for selecting eigenvectors and manipulating projections. Remaining windows are VMD windows: main window and animation
controls at bottom left, console at bottom right and molecular display at top left.

435

allowing simultaneous analysis of any combination
of eigenvectors. When the VMD animation con-
trols are used to play the trajectory, the molecular
display shows the filtered trajectory: the projection
of the trajectory on the currently selected eigen-
vectors. Slider positions corresponding to selected
eigenvectors are updated as each frame of the
trajectory is displayed. The movement of the slid-
ers provides an animated, graphical representation
of the projection of the trajectory on each eigen-
vector. When the animation is stopped, the sliders
for any selected eigenvector can be moved manu-
ally, which temporarily changes the projection
value on the eigenvector for the displayed frame.
The molecular display is updated as the slider is
moved, making it easy to appreciate any eigen-
vector’s contribution to the molecular motion. A
comma delimited list of projections can be entered
in the text box near the bottom of the window to
rapidly set the projections along all eigenvectors.

Interactive manipulation of the molecule’s
projection along an eigenvector provides the
clearest visualization of the eigenvector, but is not
possible in cases where a static image is required
for publication or presentation. Static visualiza-
tions can be produced by selecting a single eigen-
vector and clicking on representative atoms. An
arrow is drawn through the clicked atoms, with the
arrow’s head representing the atom’s position at
the most positive projection and the tail repre-
senting the most negative projection.

When IED is used to visualize normal modes
data, there is no associated trajectory, and no
projections file is loaded. In this case trajectory
playing and filtering features are disabled, but all
other features are available.

Conclusions

IED allows interactive visualization and manipu-
lation of projections of protein motion on selected
eigenvectors and easy selection and filtering on
different discontinuous sets of eigenvectors. It in-
creases efficiency in working with ED results and
enables appreciation of aspects of the dynamics
that might be missed with more limited tools.

IED is freely available under the Gnu Public Li-
cense at http://mccammon.ucsd.edu/software.html.

The language, applications and libraries on which
it depends are also freely available.

Acknowledgements

I thank Prof. J. Andrew McCammon for helpful
suggestions and Dr. Justin Gullingsrud for advice
on VMD and Python. I thank the Taft family for
their support through the Taft Fellowship, and
The Burroughs Wellcome Fund for their support
through the La Jolla Interfaces in Science Pre-
doctoral Fellowship. This work has been sup-
ported in part by grants from NSF, NIH, the NSF
Center for Theoretical Biological Physics, the
National Biomedical Computing Resource, and
Accelrys, Inc.

References

1. Shen, T., Tai, K. Henchman, R.H. and McCammon, J.A.,
Acc. Chem. Res., 35 (2002) 332.

2. Amadei, A., Linssen, A.B.M. and Berendsen, H.J.C.,
Proteins: Struct. Funct. Genet., 17 (1993) 412.

3. Garcı́a, A.E., Phys. Rev. Lett., 68 (1992) 2696.
4. Hamelberg, D., Mongan, J. and McCammon, J.A., J.

Chem. Phys., 120 (2004) 11919.
5. de Groot, B.L., Daura, X., Mark, A.E. and Grubmuller,

H., J. Mol. Biol., 309 (2001) 299.
6. Xiong, B., Huang, X.Q., Shen, L.L., Shen, J.H., Luo,

X.M., Shen, X., Jiang, H.L. and Chen, K.X., Acta
Pharmacol. Sin., 25 (2004) 705.

7. Lee, J., Suh, S.W. and Shin, S., J. Biomol. Struct. Dyn., 18
(2000) 297.

8. Crabbe, M.J., Cooper, L.R. and Corne, D.W., Comput.
Biol. Chem., 27 (2003) 507.

9. Arcangeli, C., Bizzarri, A.R. and Cannistraro, S., Bio-
phys. Chem., 90 (2001) 45.

10. Lindahl, E., Hess, B. and van der Spoel, D., J. Mol.
Model., 7 (2001) 306.

11. Vriend, G., J. Mol. Graph., 8 (1990) 52.
12. Kendall, R.A., Apra, E., Bernholdt, D.E., Bylaska, E.J.,

Dupius, M., Fann, G.I., Harrison, R.J., Ju, J., Nichols,
J.A., Nieplocha, J., Straatsma, T.P., Windus, T.L. and
Wong, A.T., Comput. Phys. Commun., 128 (2000) 260.

13. Case, D., Darden, T., Cheatham III, T.E., Simmerling, C.,
Wang, J., Duke, R., Luo, R., Merz, K., Wang, B.,
Pearlman, D., Crowley, M., Brozell, S., Tsui, V., Gohlke,
H., Mongan, J., Hornak, V., Cui, G., Beroza, P.,
Schafmeister, C., Caldwell, J., Ross, W. and Kollman,
P., AMBER 8, 2004.

14. Huitema, H. and van Liere, R., IEEE Visualization 2000
Proceedings 11, 2000.

15. Humphrey, W., Dalke, A. and Schulten, K., J. Mol.
Graph., 14 (1996) 33.

436

