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Abstract. The Adaptive Poisson-Boltzmann Solver (APBS) is a state-of-the-art suite for
performing Poisson-Boltzmann electrostatic calculations on biomolecules. The iAPBS
package provides a modular programmatic interface to the APBS library of electrostatic
calculation routines. The iAPBS interface library can be linked with a FORTRAN or C/C++
program thus making all of the APBS functionality available from within the application.
Several application modules for popular molecular dynamics simulation packages – Amber,
NAMD and CHARMM are distributed with iAPBS allowing users of these packages to
perform implicit solvent electrostatic calculations with APBS.
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1. Introduction

The important role of solvation in biomolecular systems has led to the development of
a variety of computational methods for studying the properties of these interactions [1].
Two of the most popular methods are explicit solvent methods, which treat the solvent in
full atomic detail, and implicit solvent methods, which represent the solvent through its
average eUect on solute. Although explicit solvent methods oUer a very detailed description
of biomolecular solvation they are computationally demanding due to the large number of
degrees of freedom associated with the explicit solvent and ions. Consequently, implicit
solvent methods have become popular alternatives to explicit solvent approaches [2–5].

The Adaptive Poisson-Boltzmann Solver (APBS) [6] is a software package for the
numerical solution of the Poisson-Boltzmann equation, one of the most popular continuum
descriptions of solvation for biomolecular systems. The Poisson-Boltzmann equation (PBE)
[7, 8]

−∇ · ϵ(x )∇ϕ(x ) + κ̄2(x ) sinhϕ(x ) = f (x ), (1)

relates the electrostatic potential (ϕ) to the dielectric properties of the solute and solvent (ϵ),
the ionic strength of the solution and the accessibility of ions to the solute interior (κ̄2), and
the distribution of solute atomic partial charges (f ). This nonlinear PBE equation is often
simpliVed to the linearized PBE (LPBE) by assuming sinhϕ(x ) ≈ ϕ(x ).

APBS was designed to eXciently evaluate electrostatic properties for a wide range of
length scales and has been used for calculations on systems from small to very large [6,9,10].
APBS is robust and oUers state-of-the-art computational algorithms for the Vnite diUerence
(FD) and Vnite element (FE) discretization schemes of the Poisson-Boltzmann equation.
The iAPBS interface library programmatically abstracts all APBS features and makes them
available to 3rd-party applications, like molecular dynamics and Monte Carlo simulation
packages. APBS integration augments these 3rd-party packages with an advanced facility
for evaluating implicit solvent electrostatic energies and forces. It also adds the ability
for 3rd-party software to output spatial distributions of the calculated properties (charge,
electrostatic potential, energy density, etc.) for visualization and post-processing.

2. Software Design and Methods

2.1. Implementation

The APBS package§ is written in an object-oriented form of ANSI C with some parts of the
code in FORTRAN‖. The numerical basis of the code is FEtk, a scientiVc computing toolkit
developed by the Holst group [11, 12]. Through FEtk, APBS uses MALOC, a hardware
abstraction library for a great portability, PMG (a multigrid solver) [13, 14] and MC (an
adaptive Vnite element solver) [11, 12] for the problem domain discretization routines. The
object-oriented nature of the APBS code lends itself to encapsulation and inclusion in

§ APBS is distributed under the BSD/MIT-style open source license.
‖ FORTRAN support is currently deprecated in APBS and will be removed from future versions.
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Figure 1. Schematic design of the iAPBS architecture. The low level interface (apbsdrv(),
light red) abstracts all the APBS functionality and presents it through an API to higher level,
application speciVc modules (blue).

other applications. The iAPBS software was written with this goal in mind: encapsulating
the APBS functionality for easy integration with biochemical simulation codes which use
molecular dynamics, Monte Carlo and other methods where implicit solvent contributions
are evaluated.

A schematic representation of the iAPBS architecture design is shown in Figure 1.
iAPBS consists of two software layers: a low-level APBS library interface function
(apbsdrv()) and high level, application-speciVc modules. The apbsdrv() interface
function abstracts all APBS functionality and exposes it through an application
programming interface (API) to the higher level application module. The function accepts
several input parameters – coordinates of atoms, their charges and radii and APBS
calculation parameters. All these input parameters are passed to the APBS routines
prior to the electrostatic calculation. The function returns calculated polar and non-polar
solvation energies and forces. Various calculated properties like electrostatic potential,
solvent accessible surface deVnition, charge distribution, can also be written to Vles and
subsequently post-processed or visualized by external applications. The interface is written
in an object-oriented form of the C programming language and can be transparently called
from any C, C++ or FORTRAN code.

The calculated electrostatic and non-polar energies and forces are then incorporated
into a biochemical simulation program by the application-speciVc module. This module
should also parse the application input Vles and perform error checking and output printing.
Currently, application modules for Amber [15], CHARMM [16] and NAMD [17] molecular
dynamics packages are distributed with iAPBS.

The iAPBS distribution also includes, in addition to the extensive testing facilities a
reference module implementation in FORTRAN (src/wrapper.f) which reads input data
from an external Vle, calls the apbsdrv() interface function and prints out calculated
electrostatic energy. This reference code can be used as a template for writing additional
application modules. The iAPBS documentation includes an extensive user guide with
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practical examples and also a programmer’s guide describing the iAPBS API which should
aid in application module development.

2.2. Application Modules

The role of the application modules is to integrate APBS calculated electrostatic properties
into the information Wow in a molecular dynamics simulation program. When carrying
out implicit solvent molecular dynamics simulations, the calculated solvation energies and
forces are typically added to the total system free energy (Gtot ) and forces (Ftot ) in each MD
step. A Wowchart presented in Figure 2 shows how the iAPBS modules can be incorporated
into a molecular dynamics modeling program.

First, the application parses the general MD calculation parameters, reads in the
molecule coordinates, bonding information and the necessary force Veld parameters. Next,
the iAPBS module parses input Vles for the APBS-related calculation parameters; for
example, if solution of the nonlinear or linearized Poisson-Boltzmann equation was selected,
discretization scheme, type of boundary conditions, size of the grid and its resolution,
dielectric constants for the protein and solvent, ionic strength, etc. In addition to the
molecular Cartesian coordinates, per-atom charges and radii are also read in. Since
calculated continuum solvation properties using a discontinuous dielectric function are
very sensitive to the surface deVnitions, the selection of radius parameters is an important
step in any PB calculation [18–20]. iAPBS modules oUer several Wexible options how the
charge and radius set is constructed. These values can be either automatically extracted
from the appropriate molecular dynamics force Veld or they can be read in from an external
Vle. All available modules support reading the charge and radius information from PQR
Vles. The format of PQR Vles is a modiVed PDB format with added charge and radius
parameters. A PQR Vle can be generated from a PDB Vle using the PDB2PQR utility [21] or
the PDB2PQR web service [22]. The charge and radius information can also be read from a
simply formatted keyword/value list.

The iAPBS interface function then performs the actual electrostatic calculation utilizing
the necessary APBS library routines¶. Upon exit the function returns the calculated
electrostatic and non-polar energies and forces which are then added to the total system
free energy and forces. This process is described in detail in the following two sections.

2.2.1. Calculating Solvation Energy The total free energy of the system (Gtot ) in implicit
solvent stochastic molecular dynamics simulations can be written as a sum of the internal
energy of the molecule (bonded and non-bonded) and free energy of solvation

Gtot = Ebonded + Enon-bonded + ∆Gsolv . (2)

The bonded internal energy Ebonded includes contributions from covalent interactions
and the non-bonded internal energy Enon-bonded usually contains the van der Waals and
Coulombic electrostatic terms. Both, the bonded and non-bonded energy terms are

¶ Periodic boundary conditions simulations are currently not supported via APBS.
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Figure 2. A symbolic Wowchart of the iAPBS module integration to a molecular dynamics
simulation program. The white boxes represent data processing and calculation by the
MD application. The iAPBS module code (blue blocks) parses and pre-processes APBS
calculation parameters, calls the low level apbsdrv() interface (light red), updates the total
system forces and energy with the calculated solvation terms (∆Fel + Fnp and ∆Gel + Gnp ,
respectively) and, if requested carries out post-processing of the calculated quantities.
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calculated by the MD application. The total solvation free energy of a molecule ∆Gsolv

is calculated by the iAPBS module using the APBS electrostatic routines. This term is
computed [23] as a sum of the electrostatic energy of the system (∆Gel ) and the non-polar
contribution to biomolecular energetics (Gnp)

∆Gsolv = ∆Gel +Gnp . (3)

The total electrostatic energy Gel can be obtained by solving the Poisson-Boltzmann
equation. However, the calculated electrostatic energy (and force) contains large “self-
energy” terms associated with the interaction of a particular charge with itself these terms
are highly dependent on the discretization of the problem [24]. Therefore, the self-energy
terms are removed by a reference calculation using the same numerical discretization

∆Gel = G
sys
el −G

ref
el , (4)

where Gsys
el is the electrostatic free energy of the system with diUerent dielectric constant

inside (in the protein, ϵp) and outside (in the solvent, ϵs ) of the biomolecule, a Vxed charge
distribution corresponding to the atom locations and charges, and a varying ion accessibility
coeXcient (κ̄2(x )) that is zero inside the biomolecule and equal to the bulk ionic strength
outside. The reference free energy Gref

el uses the same Vxed charge distribution but has a
constant dielectric coeXcient equal to the value in biomolecular interior (ϵs = ϵp) and a
constant zero ion accessibility coeXcient (κ̄2(x ) = 0).

The ∆Gel evaluation is implemented in iAPBS as a two step calculation (see Figure 2).
First, the electrostatic energy of the system (Gsys

el ) is computed by calling apbsdrv() with
the requested calculation parameters. Then the same calculation is repeated in the reference
environment – in homogeneous dielectric ϵs = ϵp and zero ionic strength (κ̄2(x ) = 0). Both
calculations use the same discretization (i.e., same FD grid spacing or FE reVnement) to
ensure cancellation of self-energies in computing ∆Gel .

In iAPBS, the non-polar solvation term Gnp in Equation 3 is approximated by a linear
function of the solvent-accessible surface area:

Gnp = γA (5)

where A is the solvent-accessible surface area and γ is the energetic coeXcient or surface
tension. APBS also oUers more accurate approximate methods [25] for evaluatingGnp ; these
will be implemented in the future releases of iAPBS.

2.2.2. Calculating Solvation Forces Similar to the total free energy calculation, the total
force on the system in implicit solvent molecular dynamics simulations is evaluated as a
sum of bonded forces (Fbonded ), non-bonded forces (Fnon-bonded ) and forces due to the solvent
environment (∆Fsolv ):

Ftot = Fbonded + Fnon-bonded + ∆Fsolv . (6)

Both Fbonded and Fnon-bonded forces are computed by the MD application and the solvation
forces ∆Fsolv are calculated by the iAPBS interface function. Like their energetic
counterparts, solvation force evaluations must also be performed using reference calculation
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due to the presence of self-interactions in the charge distribution. The total solvation force
on the system is calculated as

∆Fsolv = F sysel − F refel + Fnp , (7)

where F sysel is the total electrostatic force on atoms of the system due to all atoms. This
is calculated from the numerical solution of the PB equation and the dielectric and ion
accessibility coeXcients are inhomogeneous. F refel is the total electrostatic force on atoms in
the reference system due to all atoms. This is again calculated from the numerical solution of
the PB equation, however the dielectric and ion accessibility coeXcients are homogeneous
(ϵs = ϵp) and κ̄2(x ) = 0. As with the computation of free energies, this calculation is
performed using the same discretization as the calculation of F sysel . The Fnp term represents
the non-polar forces.

As shown in Figure 2, the total solvation energy and force (∆Gsolv and ∆Fsolv )
calculation requires two calls to the low level apbsdrv() function per MD step. During the
Vrst call, the system electrostatic energy and forces (Gsys

el and F sysel ) and the non-polar energy
and forces (Gnp and Fnp , respectively) are calculated. During the second call the reference

electrostatic energy and force (Gref
el and F refel ) are computed. These two calculations must

be repeated for each MD step (unless an alternative solvation force update scheme is used,
see below). Since the apbsdrv() evaluation is the slowest step in the workWow there are
some performance issues to be considered. Although it is possible to implement, with
certain assumptions, a solvation energy and force calculation protocol using only one
apbsdrv() call per MD step (i.e., skipping the reference system calculation) this comes
with a signiVcant accuracy penalty. The current versions of Amber, CHARMM and NAMD
modules use the reference system calculation every MD step to ensures cancellation of
self energies and, therefore, accurate solvation energies and forces. These modules also
reconstruct the numerical grid every MD step instead of re-using it. This improves the PB
calculation stability and accuracy due to maintaining the rotational invariability of the PB
solution with respect to the grid (at adequate grid spacing) with only a negligible impact on
the performance.

The forces and energies due to Coulomb’s law (pairwise Coulombic interactions
between all atoms in the molecule) are not calculated by iAPBS and must be supplied by
the molecular dynamics application. This is usually not an issue since the calculation of
Coulombic energies and forces is implemented as a part of the non-bonded energy and
force evaluation in these programs.

2.2.3. Other Features The currently available iAPBS application modules also contain
several features extending the capabilities of these applications:
Adaptive grid size The Amber, NAMD and CHARMMmodules implement an adaptive grid
size algorithm for minimization and molecular dynamics calculations. This feature allows
the user to specify a target grid resolution (for example 0.5 Å); the grid span and size are then
recalculated on the Wy during each minimization or MD step, ensuring that the molecule is
completely enveloped by the grid of the requested resolution. This adaptive grid resizing
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increases accuracy of the calculation of both electrostatic energy and electrostatic forces
due to the consistent grid discretization parameters between the MD steps. It also prevents
the molecule from “falling oU” the grid when the volume of the molecule is changed from
one MD step to another during the simulation.
On-the-Wy electrostatic potential map generation The Amber module can also write
out electrostatic potential maps after each individual step in the molecular dynamics
simulation. The maps (one per each MD step or optionally per n-th MD step) can be post-
processed to create a dynamic picture of the electrostatic potential during the molecular
dynamics (for example as a movie).
Electrostatic energy decomposition Another feature implemented in the Amber module
is the availability of electrostatic energy decomposition – either at per-atom or per-residue
levels. This information can be used, for example, to study the changes in the electrostatic
potential at active site residues during a MD simulation.
Alternative solvation force update scheme The Poisson-Boltzmann-based solvation
force evaluation is one of the slowest steps in molecular dynamics simulations and there
has been a considerable eUort to address this performance issue [26]. Since the electrostatic
potential distribution varies only slowly with small conformation changes during dynamic
simulations, it is reasonable to assume that updating this potential only every n-th step
should not compromise the integrity of the calculated thermodynamic and kinetic data. The
iAPBS Amber module implements an alternative solvation force update scheme based on the
molliVed impulse method [27]. Additionally, the solvation update force code is written in a
modular way so new update schemes can be easily implemented.
MM-PBSA based post-processing The availability of very accurate solvation energies
via the iAPBS module can also be exploited in MM-PBSA [28] type of calculations. The
mmpbsa.py script [29] which is distributed with Amber allows use of the iAPBS-calculated
solvation energies (both electrostatic and non-polar parts) in the MM-PBSA protocol.
Visualization and post-processing of volumetric data Visualization is a very important
tool when analyzing biomolecular electrostatics. Some of the most common ways to study
the three dimensional distribution of electrostatic potential around the molecule include
projection of the calculated potential on the solvent accessible surface area (SASA) of the
molecule or construction of electrostatic potential isocontours around the molecule.

APBS features an advanced facility for writing out calculated three-dimensional
volumetric data, from electrostatic maps to charge distributions. The iAPBS interface allows
for this facility to be used in the molecular dynamics simulation packages thus providing a
way to generate “dynamic” electrostatic data. The ability to investigate how the electrostatic
spatial data change during the molecular dynamics simulation can oUer additional insights
to the structure and function of biomolecules. There are many possible applications of this
approach for example observing dynamical changes in three-dimensional properties of the
electrostatic potential around an active site in a biomolecule, visualizing changes in per-
residue (or per-atom) electrostatic properties, monitoring electrostatic interactions between
selected residues during the molecular dynamics simulation, etc. The iAPBS distribution
includes several PyMOL [30] script templates for generating movies of electrostatic
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properties from the individual MD simulation frames.

3. Conclusions

The Adaptive Poisson-Boltzmann Solver (APBS) software package is a widely used tool
for evaluating electrostatic interactions in biomolecular systems in implicit solvent. The
iAPBS interface library oUers a straightforward integration of the APBS capabilities into
biomolecular simulation programs. Several application modules for popular molecular
dynamics applications – Amber, CHARMM and NAMD are distributed with iAPBS. These
modules allow incorporation of APBS-calculated electrostatic and solvation energies and
forces into simulations. They also add the ability to easily generate time series of spatial
distributions for electrostatic data during the molecular dynamics simulation using the
advanced APBS volumetric data output facility. The modular design of the iAPBS interface
library allows easy extendability and addition of new application modules.
Availability: iAPBS is distributed as part of the APBS source code, in the contrib/iapbs
directory. APBS with iAPBS can be downloaded from http://www.poissonboltzmann.
org/apbs. Instructions on how to build and install iAPBS can be found at http://
mccammon.ucsd.edu/iapbs. The software is being released under the GNU public license.
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